If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8f^2+24f+18=0
a = 8; b = 24; c = +18;
Δ = b2-4ac
Δ = 242-4·8·18
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$f=\frac{-b}{2a}=\frac{-24}{16}=-1+1/2$
| 2=4−2f | | 1x^2+6x+4=0 | | h4− 1= 2 | | (x-18)+(5x)=180 | | 9m-7m-m=20 | | 3-2(2-x)=5x+5 | | 9−2y=1 | | 6(-7x+32)=-38(18+8x) | | 2d−2=6 | | 12r−8−12= | | 7/5y=2=4 | | 40=2(4p+2)-4(5-5p) | | 74x-34=-36+74x | | 3(n-5)=7(n+1) | | 1x^2+6x-1=0 | | -u/6=36 | | 4m-3m=13 | | 7y=2y^2-4 | | 2x²+x²+x+10=-5x-15 | | -7y=2y^2-4 | | 4x^2-15=-17X | | 16(-3x+3)=-12(-12+4x) | | 9/2+3x=10 | | x+1=2(x+4) | | 16(-3x+3)=-12(-12=4x) | | 7b+2=2b+17 | | 5w-10=85 | | 2x/5=0,8 | | 29=y/4+8 | | 5w+-4=8 | | -7y=2y^2+6 | | 2x/x-7=4/5 |